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A Transfer Fun_ct_i()n Method of Mbdeling Systems
with Frequency-Dependent Coefficients

E.R.J efferys . D R. Broome,f and M.H. Patel*

Umverszty College, London, England

The fluid forces that act on a floating body conventionally are represented in thie frequency domain by
frequency-dependent coefficients, the added mass, and dampmg This paper descnbes a method of. charac-
terizing these forces in the time domain by a ratlonal transfer function, an equivalent dynamlc system that can be
appended to the ““dry’’ body dynamics. The technique is illustrated by an application to the roll motion of a flat-
bottomed barge; a low-order transfer function represents the infinite-order fluid dynamic system with acceptable
accuracy. The influence of the frequency-dependent coefficients on the overall system dynamlcs is discussed,
and it is shown that multlple roll resonance peaks are possible.

Introductlon

RﬁDICTION of the gravrty wave-induced motron
response of a-large body in or near'the sea surface is a
problem of continuing interest in offshore engineering. The
formulation and solution of the fluid-structure interaction is
based. on linear potential flow theory that assumes in-
finitesimal harmonic waves and motions. A variety of
numerical methods! can be used to calculate the complex
amplitudes of the fluid forces due to incident waves and body
motions. Conventlonally, the motlon-dependent fluid forces
are split into real and imaginary parts in‘phase with ac-
celeratron and velocity; they are referred to as added mass and
damping because of the similarity between the resulting
frequency domain equation of motion and the sécond-order
differential equation which describes the motion: of a miass,
spring, and damper system. These hydrodynamic coefficients
can: be calculated for a range of frequenc1es, and super-
' posmon may be used to determine the body response to a
summation of ‘waves of dlfferent ‘frequencies. Since the
equation - of ‘motion contains frequency—dependent coef-
ficients, it is valid only if the motion is harmonic; transient
motions or nonlinearities’ in the’ body dynamlcs such as
quadratic damping cannot be ‘included in the formulation
directly. Nevertheless, the fluid-structure interaction can be
evaluated only in the frequency domain and it is from this
representatlon ‘that - tlme-domam models of the fluid are
derived. .

The classical model2 uses a convolutlon of the body velocxty
history with a force impulse function to represent the motion-
dependent fluid forces. Alternatively, . some - equlvalent
lumped dynamic system whose frequency response ap-
proximates that of the fluid may be substituted for the
convolution.> The resulting model is more convenient for
some purposes; in particular, simulations are much simpler
and quicker—an important factor if parametrrc studies of .a
nonlinear systém ‘subject to random waves are to be carried
out. In the control theory field, similar techniques of varying
degrees of sophistication have been used for some years to
derive. simple representations of the important features of
complicated dynamical systems" appllcatrons of such system
identification methods in marine dynamlcs are still relatively
mfrequent 356 )
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. Sophisticated time-domain techniques. were applied by
Robins’ and J efferys3 to identify discrete time models of the
hydrodynamics of a wave power device moving in three in-
teractlng degrees” of freedom; experimental -data yielded
models in which frequency responses agreed well with dif-
fraction:theory predictions. Simpler transfer function fitting
techmques were applied by Booth® in the modeling of sub-
marine dynamics, and a similar method has been used to
characterize the fluid dynamics of an oscillating water column
wave power device.®

-In this paper, the frequency—domam transfer function
fitting technique is described and applied to the roll dynamics
of a flat-bottomed cargo barge for which théoretical and
expenmental hydrodynamic coefficients are known. If the
barge dynamlcs are linear, the complete system model can be
used in. simulations -to. evaluate transient forces and
displacements; where _ the body ' dynamics contain non-
linearities caused by quadratic damping, nonlinear moorings

_or fenders; the linear model of the fluid dynamics can be

incorporated in an efficient nonhnear simulation.

Theory
The Classrcal Smgle-Degree-of—Freedom Model
For simplicity, ‘the roll dynamics of the barge will be

. assumed to be decoupled from the other degrees of freedom.

This is an excellent-assumption except for the sway mode
which can coupie quite strongly to roll; techniques for dealing
with multi- degree-of freedom problems  will  be discussed
later. -

The roll dlsplacements & are described by a second-order

_ differential equatron of the form

BB (1) +Co(1) +K2 (1) =M, (1) + M, (1) 0

where I is the moment of inertia of the body in roll and X is
the roll stiffness caused by hydrostatic forces. The damping
term C is an equivalent value used to make some allowance
for quadratic damping caused by vortex sheddmgwfrom sharp
edges such as ‘bilge keels. It can usually be neglected if the
submerged ‘surface is smooth and free. from turbulence-
inducing marine growths. Exciting moments caused by the
incident waves and any external forces such as crane loads are
represented by M, (¢). Moments generated by the dynamic

" reaction of the fluid to the rolling motion .of the barge are

denoted by M, (z). The.simplest representation of these
radiation forces characterizes them using terms proportional
to the instantaneous roll velocity and acceleratlon Equation
(1) can ‘be written as

(I{rA)@(t)+(B+C)§(t)+Kq,(t)=Md(t) o
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where 4 is an added moment of inertia and B is a wave
making damping.

If all of the parameters have known, constant values and
M, (%) is specified, Eq. (2) can be solved easily in the

frequency or time domains to yield complex amplitudes or

time histories of roll displacement &. In practice, 4 and B are
often strong functions of the frequency of the barge motion
and, therefore, cannot be assumed constant in a time-domain
expression.

Frequency-Dependent Coefficients

Equation (2) remains valid in the frequency domain if A4
and B are functions of frequency; making their dependence
explicit, the equation of motion can be rewritten to relate the
complex amplitudes of the moment M,(f) and response
®(1).

[—w2(1+A(w))+jQ(C+B(w))+K]‘I>(jw) =M, (jo) (3)

Typical values of 4 (w),.and B(w), normalized in the usual
way, are shown in Fig. 1. They were computed for a flat-
bottomed barge by a boundary integral method!?; the same
program also yields the exciting moment M, (jw) generated
by unit amplitude waves. The relative importance of the
frequency-dependent and constant parameters is a function of
the body shape and inertia distribution. Equation (3) can be
solved for a range of frequencies to give the response spec-
trum generated by any incident wave spectrum. As noted
above, this technique cannot be used for transient or
nonlinear problems—a time-domain model of the coefficients
A(w) and B(w) must be developed.

Time-Domain Models of the Frequency-Dependent Coefficients

The coefficients 4 (w) -and B(w) are the in-phase and out-
of-phase parts of the complex amplitude of the radiation
moment M, (jw) generated by the motion of the barge ® (jw).

M, (jo) = [0’ A (@) —juB(w) 12 (jo) @

Inverse Fourier transformation of Eq. (4) and application of
the convolution theorem? yields a time-domain expression for
the radiation moment M, (¢).

M == LDsu-DIT-A@E0)  ©)

The kernel L (#) is the cosine transform of the added damping
divided by the frequency.? At high frequencies, the value of
A (w) tends to a constant value, 4 (o0); this term must be
removed from the fluid force transfer function to ensure
convergence of the inverse Fourier transform. It can be added
to the barge inertia and thereby removed from the radiation
problem. The value A (o) must be computed using infinite
‘frequency Green’s functions since numerical methods become
inaccurate at high but finite frequencies. Some check on the
accuracy can be obtained from an interesting result? which
shows that the mean value of the added mass is A (o0).

SW[A(w) ~A(w)]do=0 or Sw"’ A(w)dw=0,A4 (%)
0 ' 0 (6)

The convolution integral expression is substituted in Eq. (1) to
yield a general equation of motion that is valid for all motions
and forces, harmonic or not.

7(1+/A(°°))<'I'>+Kd>+S:L(Tyi(t—T)dT:Md(t) )

Equation (7) can be solved for any exciting force time history
by numerical integration. The convolution integral generates
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Fig.1 Typical nondimensionalized added mass and damping.

an instantaneous value for the radiation force from the past
history of the roll velocity; in practice, the kernel L(#) decays
toward zero as ¢ increases so the integral need only be carried
out over a finite range. However, the integral must be re-
evaluated at frequent intervals if numerical accuracy is to be
maintained,® and this is extremely time consuming. In ad-
dition, the convolution model is cumbersome to use with
efficient variable step length integration routines.

Lumped Model of the Radiation Force

If a lumped system can be found in which frequency and
time responses are close to those of the fluid, Eq. (7) may be
expressed as a high-order differential equation that is much
more convenient’ in simulation and control work. The
transfer function of the approximate system H(s) is the ratio
of two polynomials in s, the Laplace variable. It can be
shown® that the denominator order must be two greater than
that of the numerator; a third-order model is shown here but
the generalization to higher-order systems, unlikely to be
necessary in this type of application, is obvious.

als+ao
SS+b,5°+b;s+b,

Both the numerator and denominator polynomials should
have their poles in the left half-plane since the fluid system is
stable and the Kramers-Kronig relations!! (known in a slightly
different formulation as the Bode gain phase relations!?)
indicate that it is also minimum phase. Figure 2 shows a block
diagram. of the fluid and body dynamics; the fluid system
forms a dynamic feedback path H(s) whose input is the body
motion and responds by applying radiation forces to the body
dynamics, characterized by the transfer function G(s).

The frequency response of the lumped model should be
near that of the fluid dynamics:

H(s)=

®

Jwa;+ag B(w)
=A(w)+ 9
—ju? —w?b, +job; + by (©) Jw ®

H(jw)=
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Fig. 2 Block diagram of barge and fluid dynamics.
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> i(s)

Fig. 3 Block diagram of a system with two interacting degrees of
freedom.

Similarly, the time response of the system to impulse inputs
should be close to that of the fluid, L (¢). Simple time-domain
fitting techniques are not particularly successful, therefore,
Eq. (9) is used to find ‘“best’’ values of parameters a; and b;.
The transfer function H(s) can be substituted for the
convolution integral to give an overall transfer function 7(s)
between exciting moment inputs and roll response outputs.

&(s) 1
M;(s)  (I+A(®)+H(s))s’+K

T(s)= (10

This parametric model is convenient for control work.

Alternatively, the complete system equations may be
written as an array of first-order differential equations that
are particularly useful in simulations.

dl ¢ 1=2
Ar| ¢ | = (Kep+Mu()+M,)/ (I+A())
M, |=—-b,M, +x; '
x; | —bM,+a;®+x,
| x, |=—-b,M,+a;® : an

Subsidiary variables x ; and x, have been introduced to realize
a time-domain model of the transfer function.

Extension to Multi-Degree-of-Freedom Problems

In principle, the transfer function method can handle
problems with any number of degrees of freedom. A separate
transfer function could be fitted to each element of the
(symmetric) matrix of transfer functions between body ac-
celeration and radiation force (Fig. 3).

|:Mr (jw) :l |: Ay +Byljw  Ap+Bplie } [ $ ]
A22+B22/j(.0 X

F, (o) |
i: Hu (jw) } { ‘.1" ]
= . N , (12)
X

H;; (jo)

Ay +By /jw
H;; (w)
Hy, (jo)
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Each transfer function Hy; (jw) would have to be represented
by a number of states equal to the order of its denominator in
the differential equation model of the system. Hence, the
number of states would be proportional to the square -of the

- number of degrees of freedom and the simulation would be

inefficient for more than two or three degrees of freedom.
However, when more sophisticated methods of system
identification are employed®’ it is found that the number of
states needed is, at most, only linearly proportional to the
number of degrees of freedom. This is because the interaction
between modes seems to be caused by one mode “‘seeing’’ the
states of the other. Each term of the transfer function matrix
should, therefore, have the same denominator and only the
numerators should differ. It becomes rather difficult to decide
on the best approach to scaling the problem so that sensible
relative weights are attached to errors between on and off
diagonal terms. All in-all, less ad hoc methods are to be
preferred to multi-degree-of-freedom problems.

Fitting the Model to the Fluid Dynamics

The parameters ¢; and b; must be adjusted to miniiize
some measure of the distance between the model and fluid
frequency responses. First, the order of the model must be
selected in the light of the complexity of the fluid frequency
response; isolated floating bodies have simple added mass and
damping curves which can be represented by second- or third-
order transfer functions. Only spatially separated interacting
bodies possess - complicated fluid dynamics; more
sophisticated technique then must be applied.’

Approximate values of the parameters can be obtained
from a Bode plot of the fluid frequency response; these values

"then can be refined by numerical optimization.? The simplest

approach is to minimize the sum of the absolute distances in -
the complex plane between the known points on the fluid
frequency response curve and the corresponding points on the
transfer function frquncy response, H (jw;) ‘

A+ 28
Jw

min wrt V= E —H(juwy) (13)

aj, be . k

This technique works well if the model order has been chosen
correctly and few parameters are to be optimized. Typically,
only four or five parameters can.characterize the fluid
dynamics with acceptable accuracy; the numerical op-
timization becomes prohibitively expensive if many
parameters are used. Reasonable guesses at their initial values
‘are necessary because the optimization may converge on a
spurious ‘‘local” optimum if it is started far from the true
best parameter set. This technique treates errors at all points
in the frequency range as equally important; a more
sophisticated algorithm might minimize a weighted sum of the
errors to ensure a good fit in the region where the barge
response is expected to be strongest. The simple method gives
a good fit over the whole frequency range in this application,
therefore, a more sophisticated approach appears to be un-
necessary.

Application to the Barge Roll Dynamics

The transfer function fitting technique has been applied to
develop a model of the roll dynamics of a flat-bottomed
barge. A comprehensive series of model tests has been carried
out to validate the theoretical model of the system
dynamics.!® Theoretical predictions of dynamic response to
regular and random waves accorded closely with the measured
motions. Figure 1 shows the added inertia and damping
coefficients, A(w) and B(w), calculated by a boundary in-
tegral technique. The value of A () is not clear from the

_plot, but an initial guess, based on Eq. (6), of 14 kg-m? agreed
.closely with the figure of 13.63 kg-m? generated when A (o)

was fitted as an additional parameter in the optimization. A
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facility for calculating added inertias at infinite frequency is
to be added to the numerical hydrodynamics program.
A transfer function of the form )

dy '
H(s)= 5¥————
) 2+ b;5+by ta a4

was assumed to allow adjustment of the initial guess of 14
kg-m? for the initial value of A (o). Parameter values of a,,
a;, by, b;=64.65, —0.37, 27.79, 3.574, respectively, were
found by the fitting program. Figure 4a shows the frequency
response of the frequency-dependent part of H(s) (full line)

—a— True response. —#—Fitted system
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Fig. 5a Added roll inertia of exact and fitfed systems.
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compared with the theoretical curve of the fluid frequency
response to which it was fitted. In Fig. 4b, the same in-
formation is displayed in terms of amplitude and phase, while
Figs. 5a and 5b show the corresponding added mass and
damping curves; it is clear that a simple four-parameter model
has characterized the fluid dynamics accurately.

Harmonic Response of the Barge

The harmonic response of the barge to unit amplitude
forcing torques can be calculated from Eq. (10) with either the
transfer function or the frequency-dependent coefficients
representing the fluid dynamic effects. Values of the ‘‘dry”’
parameters of the model barge were: moment of inertia
I=10.9 kg-m? and hydrostatic restoring spring K=913
Nm/rad. Although the overall barge transfer function is
fourth-order, it behaves very similarly to a second-order
system since the frequency-independent inertia (/+A())
has a value of 27.14 kg-m? which is large compared to the
maximum value of the frequency varying part, 4.2 kg-m2.
Added damping effects are only important near resonance
since the system is very lightly damped, displaying a
maximum dynamic magnification of 9.1 at resonance which
corresponds to a damping ratio of about 0.055. The value of
the frequency varying part of the added mass is only —0.27
kg-m? at resonance. Given the accuracy of the transfer
function fit to the fluid dynamics, it is not surprising that the
frequency responses of the barge with frequency dependent
coefficients are almost indistinguishable from the system
containing the transfer function model of the fluid.

Figure 6 shows a comparison between the roll transfer
function measured in random wave experiments (dashed line)
and the predictions of the transfer function model derived
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Fig.7 Harmonic response curves displaying double peaks.

from numerial hydrodynamics. There is excellent agreement

which indicates that the theory is reliable and that the lumped-
model is an accurate parameterization of the results of linear

hydrodynamic theory.

Effect of Parameter Variations

In the example discussed previously, the effects of the
frequency-dependent coefficients were masked by the total
inertia of the barge. If the dry roll inertia is decreased to 1.0
kg-m?, the frequency response develops a double peak, as
shown in Fig. 7. The trough in the total system response
T(jw) corresponds to the peak in the amplitude of the
radiation force. At either end of the frequency range, the
effects of the radiation force die away because the motion is
spring dominated at low frequencies and the radiation force

J. GUIDANCE

transfer function tends to zero at high frequencies. The curve
labeled G is the forward path response, the solid body and
hydrostatic dynamics, modified by a small damping to ensure
a finite resonant response.

There are no experimental reports of double-peaked roll
transfer functions,” probably because the dry moment of
inertia required is extremely low; however, other marine
systems may well possess a suitable ratio of physical-to-fluid
inertia for the phenomenon to become apparent.

Conclusions

A transfer function formulation of the equations of motion
of a flating body has been presented; frequency-dependent
coefficients of simple form can be characterized by a low- -
order dynamic system. The differential equation model can be
used in simulations to determine the response of the system to
transient forces or its response to random waves when subject
to nonlinear mooring or damping forces. In the test example,
the effect of the frequency varying coefficients was, to a large
extent, masked by the large dry roll inertia of the barge; it has
been shown that multiple peaks in the frequency response are
possible if the fluid dynamic effects are comparable with the
dry dynamics of the system.

Transfer function fluid models offer an accurate charac-
terization of the linear fluid dynamics which may be used in
simulations of floating bodies with severe dynamic

" nonlinearities.

References

'Mei, C.C., ‘““Numerical Methods in Water Wave Diffraction and
Radiation,”” Annual Review of Fluid Mechanics, 1978, Vol. 10, pp.
393-416. : .

2Wehausen, J.V., “The Motion of Floating Bodies,”” Annual
Review of Fluid Mechanics, 1971, Vol. 3, pp. 237-268. :

3Jefferys, E.R., “Device Characterization,” ‘Power from Sea
Waves, edited by B.M. Count, Academic Press, New York, 1980.

4Eykhoff, P., System Identification, John Wiley & Sons, New
York, 1972, pp. 413-438.

*Kaplan, P., Sargent, T.P., and Goodman, T.R., “The Ap-

plication of System Identification to Dynamics of Naval Craft,”

Proceedings of the 9th Symposium on Naval Hydrodynamics, Office

 of Naval Research, Paris, 1972.

$Kaplan, P., Jiang, C.W., and Dello Stritto, F.J., ‘“‘Determination
of Offshore Structure Morison Equation Force Coefficients Via
System Identification Techniques,”’ Proceedings of the International
Symposium on Hydrodyanmics in Ocean Engineering, Trondheim,
Norway, 1981, Vol. 1, pp. 469-489.

"Robins, A.R., “Structural Decomposition in Identification,”
Ph.D. Thesis, University of Manchester Institute of Science and
Technology, 1980. ‘

8Booth, T.B., ‘‘Identifying the Marine Vehicle from the Pulse
Response,”’ Proceedings of the 4th Ship Control Systems Symposium,
Vol. 4, Oct. 1975, pp. 137-150.

9 Jefferys, E.R., “Simulation of Wave Power Devices,”” Applied
Ocean Research, Vol. 6, No. 1,1984.

©¥Brown, D.T., Eatock-Taylor, R., and Patel, M.H., ‘“‘Barge
Motions in Random Seas—A Comparison of Theory and Ex-
periment,”” Journal of Fluid Mechanics,” Vol. 129, April 1983, pp.
385-407.

UKotik, J. and Mangulis, V., ““On the Kramers-Kronig Relations
for Ship Motions,”’ International Shipbuilding Progress, Vol. 9, Sept.
1962, pp. 361-367. ’

1280lodovnikov, V.V., “Introduction to the Statistical Dynamics
of Automatic Control Systems,”” Dover Publications, Mineola, N.Y.,
1960, Chap. 1, pp. 42-47.



